skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Asadi, K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Principled decision-making in continuous state-action spaces is impossible without some assumptions. A common approach is to assume Lipschitz continuity of the Q-function. We show that, unfortunately, this property fails to hold in many typical domains. We propose a new coarse-grained smoothness definition that generalizes the notion of Lipschitz continuity, is more widely applicable, and allows us to compute significantly tighter bounds on Q-functions, leading to improved learning. We provide a theoretical analysis of our new smoothness definition, and discuss its implications and impact on control and exploration in continuous domains. 
    more » « less
  2. Deep Q-Network (DQN) is an algorithm that achieves human-level performance in complex domains like Atari games. One of the important elements of DQN is its use of a target network, which is necessary to stabilize learning. We argue that using a target network is incompatible with online reinforcement learning, and it is possible to achieve faster and more stable learning without a target network when we use Mellowmax, an alternative softmax operator. We derive novel properties of Mellowmax, and empirically show that the combination of DQN and Mellowmax, but without a target network, outperforms DQN with a target network. 
    more » « less